Topic 12 Factor Analysis

## Warning: `read_table2()` was deprecated in
## readr 2.0.0.
## ℹ Please use `read_table()` instead.
## 
## ── Column specification ───────────────
## cols(
##   .default = col_double()
## )
## ℹ Use `spec()` for the full column specifications.

12.1 Overview

  • What is factor analysis
  • CFA versus PCA
  • Variance in factor analysis
  • Considertations for factor analysis
  • Identifying / extracting factors
  • Rotation
  • Cronbach’s alpha

12.2 Exploratory Factor analysis

  • Identify the relational structure between a set of variables in order to reduce them to a smaller set of factors
    • The process of dimension reduction (identify new variables) or data summarisation (summarise what is already there)

12.2.1 Dimension reducton

  • Latent Variables: Not directly observable. Rather they are inferred from other responses
    • Many psychological constructs (e.g. anxiety) are latent variables that we cannot directly measure.
    • Rather, we can measure behaviours, cognitions and other variables that are related to the construct.

We might concptualise this as: “Responses to the questions are indicative of levels of underlying anxiety”

12.2.2 Data summarisation

  • Index Variables or Components: A weighted summary of measured variables that contribute to the component variable

  • “Principal components are variables of maximal variance constructed from linear combinations of the input features”

We might conceptualise this as: “We can reduce these measures/questions to a smaller set of higher order, independent, composite variables”

12.3 Variance in exploratory factor analysis

There are two common methods of exploratory factor analysis: Common Factor analysis and Principal Component Analysis

  • CFA assumes that there are two types of variance: common and unique

12.3.1 Variance in PCA

  • PCA only assumes common variance

12.3.2 Variance in CFA

  • Due to these different approaches, PCA is considered to be reflective of the current sample but not generalisable to the wider population
  • Whereas, CFA is considered appropriate for hypothesis testing and making inferences to the population

12.4 What is factor analysis?

  • If we measure several variables (or questions), we can examine the correlation between sets of these variables
    • Such a correlation matrix is known as an R Matrix (r because correlation)
  • If there are clusters of correlations between a number of the variables (or questions), this indicates that they might be linked to the same underlying dimension (or latent variable)
  • The researcher should use informed judgement when assessing the appropriateness of variables for inclusion

An r matrix example

12.5 Considerations with factor analysis

  • Sample size:
    • Must be more data points than variables being measured
    • A common rule of thumb is at least 10 per variable
    • There are tests to assess sample size adequacy (e.g. Kaiser-Meyer test should be greater than 0.5)
  • Inter-correlation:
    • There must be sufficient correlation between the variables being measured
    • A high number of correlations over 0.3
    • Can be tested using Bartlett test of sphericity (sig. result means factor analysis can be used)

Other things to check (see Field, 2018)

  • The quality of analysis depends upon the quality of the data (GI/GO).
  • Avoid multicollinearity:
    • several variables highly correlated, r > .80.
    • Determinent: should be greater than 0.00001
  • Avoid singularity:
    • some variables perfectly correlated, r = 1.
  • Screen the correlation matrix, eliminate any variables that obviously cause concern.

12.6 Representing factor analysis

We can represent factors visually based on the strength of their inter-correlations - Here, the axis of the graph represents a factor or latent variable

We can also represent factor analysis using a regression equation - Here the beta values represent the extent to which the variable “loads onto” a particular factor

Example: Statistics anxiety

  • Many people get anxious about statistics

  • We can ask them about their experience in a number of ways (e.g. questions compiled by students in a stats class)

  • Their responses might indicate that stats anxiety has a number of dimensions

    • i.e. it is a multi-dimensional construct, as opposed to a unitary construct

12.7 Step 1: Create a correlation matrix

raq.matrix <- cor(raq)

raq.matrix
##              Q01         Q02
## Q01  1.000000000 -0.09872403
## Q02 -0.098724032  1.00000000
## Q03 -0.336648879  0.31839020
## Q04  0.435860179 -0.11185965
## Q05  0.402439917 -0.11934658
## Q06  0.216733985 -0.07420968
## Q07  0.305365139 -0.15917448
## Q08  0.330737608 -0.04962257
## Q09 -0.092339458  0.31464054
## Q10  0.213681706 -0.08400316
## Q11  0.356786290 -0.14382984
## Q12  0.345381133 -0.19486946
## Q13  0.354646283 -0.14274026
## Q14  0.337879655 -0.16469991
## Q15  0.245752635 -0.16499581
## Q16  0.498618057 -0.16755228
## Q17  0.370550512 -0.08699527
## Q18  0.347118037 -0.16389415
## Q19 -0.189011027  0.20329748
## Q20  0.213897945 -0.20159437
## Q21  0.329153138 -0.20461730
## Q22 -0.104408664  0.23087487
## Q23 -0.004480593  0.09967828
##            Q03         Q04         Q05
## Q01 -0.3366489  0.43586018  0.40243992
## Q02  0.3183902 -0.11185965 -0.11934658
## Q03  1.0000000 -0.38046016 -0.31030879
## Q04 -0.3804602  1.00000000  0.40067225
## Q05 -0.3103088  0.40067225  1.00000000
## Q06 -0.2267405  0.27820154  0.25746014
## Q07 -0.3819533  0.40861502  0.33939179
## Q08 -0.2586342  0.34942939  0.26862697
## Q09  0.2998036 -0.12454637 -0.09570151
## Q10 -0.1933887  0.21581010  0.25820925
## Q11 -0.3506397  0.36865655  0.29782882
## Q12 -0.4099513  0.44164706  0.34674325
## Q13 -0.3179193  0.34429168  0.30182159
## Q14 -0.3707551  0.35080964  0.31533810
## Q15 -0.3123968  0.33423089  0.26137190
## Q16 -0.4186478  0.41586725  0.39491795
## Q17 -0.3273715  0.38273945  0.31041722
## Q18 -0.3752329  0.38200149  0.32209148
## Q19  0.3415737 -0.18597751 -0.16532210
## Q20 -0.3248338  0.24291796  0.19966945
## Q21 -0.4171878  0.41029317  0.33461494
## Q22  0.2036569 -0.09838349 -0.13253593
## Q23  0.1502065 -0.03381815 -0.04165684
##             Q06         Q07
## Q01  0.21673399  0.30536514
## Q02 -0.07420968 -0.15917448
## Q03 -0.22674048 -0.38195325
## Q04  0.27820154  0.40861502
## Q05  0.25746014  0.33939179
## Q06  1.00000000  0.51358048
## Q07  0.51358048  1.00000000
## Q08  0.22283175  0.29749696
## Q09 -0.11264384 -0.12829828
## Q10  0.32223023  0.28372299
## Q11  0.32807072  0.34474770
## Q12  0.31250937  0.42298591
## Q13  0.46640487  0.44211926
## Q14  0.40224407  0.44070276
## Q15  0.35989309  0.39136675
## Q16  0.24433888  0.38854534
## Q17  0.28226121  0.39074283
## Q18  0.51332164  0.50086685
## Q19 -0.16675017 -0.26912031
## Q20  0.10092489  0.22095420
## Q21  0.27233273  0.48300388
## Q22 -0.16513541 -0.16820488
## Q23 -0.06868743 -0.07029016
##             Q08         Q09
## Q01  0.33073761 -0.09233946
## Q02 -0.04962257  0.31464054
## Q03 -0.25863421  0.29980362
## Q04  0.34942939 -0.12454637
## Q05  0.26862697 -0.09570151
## Q06  0.22283175 -0.11264384
## Q07  0.29749696 -0.12829828
## Q08  1.00000000  0.01573316
## Q09  0.01573316  1.00000000
## Q10  0.15860850 -0.13418658
## Q11  0.62929768 -0.11552479
## Q12  0.25198582 -0.16739436
## Q13  0.31424716 -0.16743882
## Q14  0.28058958 -0.12150197
## Q15  0.29968600 -0.18657099
## Q16  0.32149420 -0.18886556
## Q17  0.59014022 -0.03681556
## Q18  0.27974433 -0.14957782
## Q19 -0.15947671  0.24931170
## Q20  0.17515089 -0.15864747
## Q21  0.29571756 -0.13594310
## Q22 -0.07917265  0.25684622
## Q23 -0.05023839  0.17077441
##             Q10         Q11
## Q01  0.21368171  0.35678629
## Q02 -0.08400316 -0.14382984
## Q03 -0.19338871 -0.35063969
## Q04  0.21581010  0.36865655
## Q05  0.25820925  0.29782882
## Q06  0.32223023  0.32807072
## Q07  0.28372299  0.34474770
## Q08  0.15860850  0.62929768
## Q09 -0.13418658 -0.11552479
## Q10  1.00000000  0.27143657
## Q11  0.27143657  1.00000000
## Q12  0.24582591  0.33529466
## Q13  0.30196707  0.42316548
## Q14  0.25468730  0.32532025
## Q15  0.29523438  0.36482687
## Q16  0.29058576  0.36907763
## Q17  0.21832214  0.58683495
## Q18  0.29250304  0.37341373
## Q19 -0.12723487 -0.19965203
## Q20  0.08406520  0.25533736
## Q21  0.19313633  0.34643407
## Q22 -0.13090831 -0.16198921
## Q23 -0.06191796 -0.08637256
##             Q12         Q13
## Q01  0.34538113  0.35464628
## Q02 -0.19486946 -0.14274026
## Q03 -0.40995127 -0.31791928
## Q04  0.44164706  0.34429168
## Q05  0.34674325  0.30182159
## Q06  0.31250937  0.46640487
## Q07  0.42298591  0.44211926
## Q08  0.25198582  0.31424716
## Q09 -0.16739436 -0.16743882
## Q10  0.24582591  0.30196707
## Q11  0.33529466  0.42316548
## Q12  1.00000000  0.48871303
## Q13  0.48871303  1.00000000
## Q14  0.43270398  0.44978632
## Q15  0.33179910  0.34219704
## Q16  0.40805908  0.35837775
## Q17  0.33269383  0.40837657
## Q18  0.49296482  0.53293713
## Q19 -0.26665953 -0.22697105
## Q20  0.29802585  0.20396327
## Q21  0.44063832  0.37443078
## Q22 -0.16728557 -0.19535632
## Q23 -0.04642506 -0.05298304
##             Q14         Q15
## Q01  0.33787966  0.24575263
## Q02 -0.16469991 -0.16499581
## Q03 -0.37075510 -0.31239678
## Q04  0.35080964  0.33423089
## Q05  0.31533810  0.26137190
## Q06  0.40224407  0.35989309
## Q07  0.44070276  0.39136675
## Q08  0.28058958  0.29968600
## Q09 -0.12150197 -0.18657099
## Q10  0.25468730  0.29523438
## Q11  0.32532025  0.36482687
## Q12  0.43270398  0.33179910
## Q13  0.44978632  0.34219704
## Q14  1.00000000  0.38011484
## Q15  0.38011484  1.00000000
## Q16  0.41841820  0.45427861
## Q17  0.35374183  0.37310235
## Q18  0.49830615  0.34287045
## Q19 -0.25405813 -0.20980230
## Q20  0.22592173  0.20625622
## Q21  0.39938896  0.29971557
## Q22 -0.16983754 -0.16790617
## Q23 -0.04847418 -0.06200665
##             Q16         Q17
## Q01  0.49861806  0.37055051
## Q02 -0.16755228 -0.08699527
## Q03 -0.41864780 -0.32737145
## Q04  0.41586725  0.38273945
## Q05  0.39491795  0.31041722
## Q06  0.24433888  0.28226121
## Q07  0.38854534  0.39074283
## Q08  0.32149420  0.59014022
## Q09 -0.18886556 -0.03681556
## Q10  0.29058576  0.21832214
## Q11  0.36907763  0.58683495
## Q12  0.40805908  0.33269383
## Q13  0.35837775  0.40837657
## Q14  0.41841820  0.35374183
## Q15  0.45427861  0.37310235
## Q16  1.00000000  0.40976309
## Q17  0.40976309  1.00000000
## Q18  0.42197911  0.37560681
## Q19 -0.26704702 -0.16288096
## Q20  0.26514025  0.20523013
## Q21  0.42054273  0.36349147
## Q22 -0.15579385 -0.12629066
## Q23 -0.08152195 -0.09167243
##             Q18        Q19         Q20
## Q01  0.34711804 -0.1890110  0.21389794
## Q02 -0.16389415  0.2032975 -0.20159437
## Q03 -0.37523290  0.3415737 -0.32483385
## Q04  0.38200149 -0.1859775  0.24291796
## Q05  0.32209148 -0.1653221  0.19966945
## Q06  0.51332164 -0.1667502  0.10092489
## Q07  0.50086685 -0.2691203  0.22095420
## Q08  0.27974433 -0.1594767  0.17515089
## Q09 -0.14957782  0.2493117 -0.15864747
## Q10  0.29250304 -0.1272349  0.08406520
## Q11  0.37341373 -0.1996520  0.25533736
## Q12  0.49296482 -0.2666595  0.29802585
## Q13  0.53293713 -0.2269710  0.20396327
## Q14  0.49830615 -0.2540581  0.22592173
## Q15  0.34287045 -0.2098023  0.20625622
## Q16  0.42197911 -0.2670470  0.26514025
## Q17  0.37560681 -0.1628810  0.20523013
## Q18  1.00000000 -0.2566318  0.23518040
## Q19 -0.25663183  1.0000000 -0.24859386
## Q20  0.23518040 -0.2485939  1.00000000
## Q21  0.43010427 -0.2748979  0.46770448
## Q22 -0.15982631  0.2339226 -0.09970186
## Q23 -0.08041698  0.1224344 -0.03466529
##             Q21         Q22
## Q01  0.32915314 -0.10440866
## Q02 -0.20461730  0.23087487
## Q03 -0.41718781  0.20365686
## Q04  0.41029317 -0.09838349
## Q05  0.33461494 -0.13253593
## Q06  0.27233273 -0.16513541
## Q07  0.48300388 -0.16820488
## Q08  0.29571756 -0.07917265
## Q09 -0.13594310  0.25684622
## Q10  0.19313633 -0.13090831
## Q11  0.34643407 -0.16198921
## Q12  0.44063832 -0.16728557
## Q13  0.37443078 -0.19535632
## Q14  0.39938896 -0.16983754
## Q15  0.29971557 -0.16790617
## Q16  0.42054273 -0.15579385
## Q17  0.36349147 -0.12629066
## Q18  0.43010427 -0.15982631
## Q19 -0.27489793  0.23392259
## Q20  0.46770448 -0.09970186
## Q21  1.00000000 -0.12902148
## Q22 -0.12902148  1.00000000
## Q23 -0.06766437  0.23036940
##              Q23
## Q01 -0.004480593
## Q02  0.099678285
## Q03  0.150206522
## Q04 -0.033818152
## Q05 -0.041656841
## Q06 -0.068687430
## Q07 -0.070290157
## Q08 -0.050238392
## Q09  0.170774410
## Q10 -0.061917956
## Q11 -0.086372565
## Q12 -0.046425059
## Q13 -0.052983042
## Q14 -0.048474181
## Q15 -0.062006650
## Q16 -0.081521950
## Q17 -0.091672426
## Q18 -0.080416984
## Q19  0.122434401
## Q20 -0.034665293
## Q21 -0.067664367
## Q22  0.230369402
## Q23  1.000000000

12.8 Step 2: Let’s check for Inter-correlation

library(corrplot)
## corrplot 0.92 loaded
corrplot(raq.matrix, method = "number")

  • We can use bartlett’s test from the psych package
library(psych)

cortest.bartlett(raq.matrix, n=2571)
## $chisq
## [1] 19334.49
## 
## $p.value
## [1] 0
## 
## $df
## [1] 253

12.9 Step 3: Check sampling adequacy

  • Overall should be > 0.5
KMO(raq)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = raq)
## Overall MSA =  0.93
## MSA for each item = 
##  Q01  Q02  Q03  Q04  Q05  Q06  Q07 
## 0.93 0.87 0.95 0.96 0.96 0.89 0.94 
##  Q08  Q09  Q10  Q11  Q12  Q13  Q14 
## 0.87 0.83 0.95 0.91 0.95 0.95 0.97 
##  Q15  Q16  Q17  Q18  Q19  Q20  Q21 
## 0.94 0.93 0.93 0.95 0.94 0.89 0.93 
##  Q22  Q23 
## 0.88 0.77

12.10 Step 4: Identify number of factors

  • Based on Eigenvalues:
    • Kaiser (1960) – retain factors with eigen values > 1.
    • Joliffe (1972) – retain factors with eigen values > .70.
  • Use a scree plot: Cattell (1966): use ‘point of inflexion’.

12.10.1 Which rule?

  • Use Kaiser’s extraction when
    • Less than 30 variables, communalities after extraction > 0.7
    • Sample size > 250 and mean communality > 0.6
  • Scree plot is good if sample size is > 200

12.10.2 Scree plot

scree(raq)

  • We are looking for the point of inflection
  • Where there is a drop-off

One approach: See how many factors we can draw a line through

12.10.3 Parallel analysis

How many dimensions of stats anxiety are captured in the questionnaire?

  • We can run a parallel analysis to get an indication of the number of factors contained within the data
  • Parallel Analysis:
    • Simulates data within the same range of values as our data set
    • Suggests that we retain, at maximum, the factors with eigenvalues larger than those extracted from simulated data.

library(psych)

 parallel_analysis <- fa.parallel(raq)

## Parallel analysis suggests that the number of factors =  6  and the number of components =  4
parallel_analysis
## Call: fa.parallel(x = raq)
## Parallel analysis suggests that the number of factors =  6  and the number of components =  4 
## 
##  Eigen Values of 
##   Original factors Resampled data
## 1             6.64           0.24
## 2             0.91           0.15
## 3             0.63           0.14
## 4             0.48           0.12
## 5             0.29           0.10
## 6             0.13           0.09
##   Simulated data Original components
## 1           0.21                7.29
## 2           0.15                1.74
## 3           0.13                1.32
## 4           0.11                1.23
## 5           0.10                0.99
## 6           0.08                0.90
##   Resampled components
## 1                 1.17
## 2                 1.15
## 3                 1.13
## 4                 1.11
## 5                 1.10
## 6                 1.08
##   Simulated components
## 1                 1.17
## 2                 1.14
## 3                 1.12
## 4                 1.11
## 5                 1.09
## 6                 1.08

12.12 Step 6: Perform factor analysis (with reduced number of factors)

paf1 <- fa(raq,
nfactors = 2,
fm="pa",
max.iter = 100,
rotate = "none")

paf1
## Factor Analysis using method =  pa
## Call: fa(r = raq, nfactors = 2, rotate = "none", max.iter = 100, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2    h2   u2 com
## Q01  0.56  0.12 0.324 0.68 1.1
## Q02 -0.28  0.39 0.228 0.77 1.8
## Q03 -0.61  0.25 0.430 0.57 1.3
## Q04  0.61  0.09 0.377 0.62 1.0
## Q05  0.52  0.05 0.276 0.72 1.0
## Q06  0.53  0.04 0.282 0.72 1.0
## Q07  0.66 -0.01 0.437 0.56 1.0
## Q08  0.53  0.40 0.445 0.56 1.9
## Q09 -0.27  0.46 0.287 0.71 1.6
## Q10  0.40  0.00 0.163 0.84 1.0
## Q11  0.63  0.27 0.472 0.53 1.3
## Q12  0.64 -0.08 0.421 0.58 1.0
## Q13  0.65  0.04 0.421 0.58 1.0
## Q14  0.63 -0.02 0.396 0.60 1.0
## Q15  0.56  0.00 0.315 0.68 1.0
## Q16  0.65 -0.01 0.428 0.57 1.0
## Q17  0.63  0.34 0.511 0.49 1.5
## Q18  0.68 -0.02 0.461 0.54 1.0
## Q19 -0.40  0.28 0.238 0.76 1.8
## Q20  0.40 -0.15 0.187 0.81 1.3
## Q21  0.63 -0.07 0.403 0.60 1.0
## Q22 -0.28  0.29 0.161 0.84 2.0
## Q23 -0.13  0.19 0.053 0.95 1.8
## 
##                        PA1  PA2
## SS loadings           6.67 1.04
## Proportion Var        0.29 0.05
## Cumulative Var        0.29 0.34
## Proportion Explained  0.86 0.14
## Cumulative Proportion 0.86 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  253  and the objective function was  7.55 with Chi Square of  19334.49
## The degrees of freedom for the model are 208  and the objective function was  1.23 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  2571 with the empirical chi square  3114.53  with prob <  0 
## The total number of observations was  2571  with Likelihood Chi Square =  3155.34  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.812
## RMSEA index =  0.074  and the 90 % confidence intervals are  0.072 0.077
## BIC =  1522.12
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                    PA1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.83
##                                                    PA2
## Correlation of (regression) scores with factors   0.78
## Multiple R square of scores with factors          0.61
## Minimum correlation of possible factor scores     0.23
plot(paf1)

12.13 Factor analysis rotation

What is rotation?

  • It is possible that variables load “highly” onto one factor and “medium” onto another
  • By rotating the factor axes, the variables are aligned with the factors that they load onto most
  • This helps us discriminate between factors

There are different methods of rotation

  • Orthogonal rotation: Assumes that factors are unrelated and keeps them that way
  • Oblique rotation: Assumes that factors might be related and allows them to be correlated after rotation

Are factors related? -Theoretical: Do we have logical reason for thinking they could be connected? -Based on data: Does the factor plot suggest independence or relatedness?

12.14 Step 7: Rotation

  • Perform factor analysis (with rotation)
paf2 <- fa(raq,
nfactors = 2,
fm="pa",
max.iter = 100,
rotate = "oblimin")
## Loading required namespace: GPArotation
## Warning in fac(r = r, nfactors =
## nfactors, n.obs = n.obs, rotate =
## rotate, : I am sorry, to do these
## rotations requires the GPArotation
## package to be installed
paf2
## Factor Analysis using method =  pa
## Call: fa(r = raq, nfactors = 2, rotate = "oblimin", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2    h2   u2 com
## Q01  0.56  0.12 0.324 0.68 1.1
## Q02 -0.28  0.39 0.228 0.77 1.8
## Q03 -0.61  0.25 0.430 0.57 1.3
## Q04  0.61  0.09 0.377 0.62 1.0
## Q05  0.52  0.05 0.276 0.72 1.0
## Q06  0.53  0.04 0.282 0.72 1.0
## Q07  0.66 -0.01 0.437 0.56 1.0
## Q08  0.53  0.40 0.445 0.56 1.9
## Q09 -0.27  0.46 0.287 0.71 1.6
## Q10  0.40  0.00 0.163 0.84 1.0
## Q11  0.63  0.27 0.472 0.53 1.3
## Q12  0.64 -0.08 0.421 0.58 1.0
## Q13  0.65  0.04 0.421 0.58 1.0
## Q14  0.63 -0.02 0.396 0.60 1.0
## Q15  0.56  0.00 0.315 0.68 1.0
## Q16  0.65 -0.01 0.428 0.57 1.0
## Q17  0.63  0.34 0.511 0.49 1.5
## Q18  0.68 -0.02 0.461 0.54 1.0
## Q19 -0.40  0.28 0.238 0.76 1.8
## Q20  0.40 -0.15 0.187 0.81 1.3
## Q21  0.63 -0.07 0.403 0.60 1.0
## Q22 -0.28  0.29 0.161 0.84 2.0
## Q23 -0.13  0.19 0.053 0.95 1.8
## 
##                        PA1  PA2
## SS loadings           6.67 1.04
## Proportion Var        0.29 0.05
## Cumulative Var        0.29 0.34
## Proportion Explained  0.86 0.14
## Cumulative Proportion 0.86 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  253  and the objective function was  7.55 with Chi Square of  19334.49
## The degrees of freedom for the model are 208  and the objective function was  1.23 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  2571 with the empirical chi square  3114.53  with prob <  0 
## The total number of observations was  2571  with Likelihood Chi Square =  3155.34  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.812
## RMSEA index =  0.074  and the 90 % confidence intervals are  0.072 0.077
## BIC =  1522.12
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                    PA1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.83
##                                                    PA2
## Correlation of (regression) scores with factors   0.78
## Multiple R square of scores with factors          0.61
## Minimum correlation of possible factor scores     0.23
plot(paf1)

plot(paf2)

12.15 Reliability / internal consistency

12.15.1 Cronbach’s Alpha

  • An expansion of the split-half reliability concept
  • Alpha takes all possible combination of items and assesses their relationship to each other
  • High values above 0.7 suggest internal consistency among items

12.15.2 Chronbach’s Alpha in R

  • We can use the alpha() function in the psych package
library(psych)

alpha(raq)
## Warning in alpha(raq): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Q02 Q03 Q09 Q19 Q22 Q23 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: alpha(x = raq)
## 
##   raw_alpha std.alpha G6(smc) average_r
##       0.75      0.77    0.83      0.13
##  S/N    ase mean   sd median_r
##  3.4 0.0065  3.3 0.39     0.23
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.74  0.75  0.77
## Duhachek  0.74  0.75  0.77
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc)
## Q01      0.73      0.76    0.82
## Q02      0.77      0.79    0.84
## Q03      0.79      0.81    0.85
## Q04      0.73      0.75    0.82
## Q05      0.74      0.76    0.82
## Q06      0.73      0.76    0.82
## Q07      0.73      0.75    0.82
## Q08      0.73      0.76    0.82
## Q09      0.78      0.79    0.84
## Q10      0.74      0.76    0.83
## Q11      0.73      0.75    0.81
## Q12      0.73      0.75    0.82
## Q13      0.73      0.75    0.82
## Q14      0.73      0.75    0.82
## Q15      0.73      0.76    0.82
## Q16      0.73      0.75    0.82
## Q17      0.73      0.75    0.81
## Q18      0.72      0.75    0.81
## Q19      0.78      0.80    0.85
## Q20      0.75      0.77    0.83
## Q21      0.73      0.75    0.82
## Q22      0.77      0.79    0.84
## Q23      0.77      0.79    0.84
##     average_r S/N alpha se var.r med.r
## Q01      0.12 3.1   0.0071 0.071  0.23
## Q02      0.15 3.8   0.0061 0.071  0.25
## Q03      0.16 4.2   0.0055 0.059  0.25
## Q04      0.12 3.0   0.0072 0.070  0.22
## Q05      0.12 3.1   0.0071 0.072  0.22
## Q06      0.12 3.1   0.0072 0.072  0.23
## Q07      0.12 3.0   0.0074 0.069  0.22
## Q08      0.12 3.1   0.0071 0.072  0.23
## Q09      0.15 3.8   0.0058 0.071  0.25
## Q10      0.13 3.3   0.0068 0.074  0.23
## Q11      0.12 3.0   0.0072 0.069  0.22
## Q12      0.12 3.1   0.0072 0.069  0.22
## Q13      0.12 3.0   0.0073 0.069  0.22
## Q14      0.12 3.1   0.0072 0.070  0.22
## Q15      0.12 3.1   0.0071 0.071  0.22
## Q16      0.12 3.0   0.0072 0.069  0.22
## Q17      0.12 3.0   0.0072 0.070  0.22
## Q18      0.12 3.0   0.0074 0.068  0.22
## Q19      0.15 4.0   0.0057 0.067  0.26
## Q20      0.13 3.3   0.0067 0.073  0.25
## Q21      0.12 3.1   0.0072 0.069  0.22
## Q22      0.15 3.8   0.0059 0.071  0.26
## Q23      0.14 3.7   0.0061 0.074  0.26
## 
##  Item statistics 
##        n   raw.r  std.r  r.cor r.drop
## Q01 2571  0.5598  0.581  0.564  0.492
## Q02 2571 -0.0116 -0.018 -0.114 -0.105
## Q03 2571 -0.3356 -0.361 -0.465 -0.435
## Q04 2571  0.6064  0.618  0.606  0.533
## Q05 2571  0.5365  0.546  0.516  0.454
## Q06 2571  0.5709  0.560  0.547  0.478
## Q07 2571  0.6409  0.636  0.635  0.560
## Q08 2571  0.5646  0.582  0.578  0.493
## Q09 2571  0.0587  0.020 -0.068 -0.081
## Q10 2571  0.4300  0.442  0.391  0.346
## Q11 2571  0.6078  0.628  0.633  0.540
## Q12 2571  0.5909  0.602  0.593  0.519
## Q13 2571  0.6288  0.637  0.634  0.559
## Q14 2571  0.6056  0.609  0.596  0.528
## Q15 2571  0.5433  0.550  0.526  0.457
## Q16 2571  0.5965  0.615  0.612  0.525
## Q17 2571  0.6329  0.650  0.653  0.568
## Q18 2571  0.6534  0.653  0.656  0.578
## Q19 2571 -0.1316 -0.157 -0.264 -0.248
## Q20 2571  0.3705  0.375  0.326  0.265
## Q21 2571  0.5922  0.598  0.591  0.514
## Q22 2571 -0.0063 -0.027 -0.127 -0.121
## Q23 2571  0.1030  0.084 -0.014 -0.013
##     mean   sd
## Q01  3.6 0.83
## Q02  4.4 0.85
## Q03  3.4 1.08
## Q04  3.2 0.95
## Q05  3.3 0.96
## Q06  3.8 1.12
## Q07  3.1 1.10
## Q08  3.8 0.87
## Q09  3.2 1.26
## Q10  3.7 0.88
## Q11  3.7 0.88
## Q12  2.8 0.92
## Q13  3.6 0.95
## Q14  3.1 1.00
## Q15  3.2 1.01
## Q16  3.1 0.92
## Q17  3.5 0.88
## Q18  3.4 1.05
## Q19  3.7 1.10
## Q20  2.4 1.04
## Q21  2.8 0.98
## Q22  3.1 1.04
## Q23  2.6 1.04
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## Q01 0.02 0.07 0.29 0.52 0.11    0
## Q02 0.01 0.04 0.08 0.31 0.56    0
## Q03 0.03 0.17 0.34 0.26 0.19    0
## Q04 0.05 0.17 0.36 0.37 0.05    0
## Q05 0.04 0.18 0.29 0.43 0.06    0
## Q06 0.06 0.10 0.13 0.44 0.27    0
## Q07 0.09 0.24 0.26 0.34 0.07    0
## Q08 0.03 0.06 0.19 0.58 0.15    0
## Q09 0.08 0.28 0.23 0.20 0.20    0
## Q10 0.02 0.10 0.18 0.57 0.14    0
## Q11 0.02 0.06 0.22 0.53 0.16    0
## Q12 0.09 0.23 0.46 0.20 0.02    0
## Q13 0.03 0.12 0.25 0.48 0.12    0
## Q14 0.07 0.18 0.38 0.31 0.06    0
## Q15 0.06 0.18 0.30 0.39 0.07    0
## Q16 0.06 0.16 0.42 0.33 0.04    0
## Q17 0.03 0.10 0.27 0.52 0.08    0
## Q18 0.06 0.12 0.31 0.37 0.14    0
## Q19 0.02 0.15 0.22 0.33 0.29    0
## Q20 0.22 0.37 0.25 0.15 0.02    0
## Q21 0.09 0.29 0.34 0.26 0.02    0
## Q22 0.05 0.26 0.34 0.26 0.10    0
## Q23 0.12 0.42 0.27 0.12 0.06    0
  • Here we get a warning that some of the items are negatively correlated and we should probably reverse them.
  • The decision to do so should be based on the logic of the questions themselves - check first
  • However, since cronbach’s alpha is designed to check internal consistency related to a single construct, we would expect that negative correlations would only result from:
    • Items that are designed to be reverse-scored
    • Questions that are related to another factor or construct
  • Let’s check the questionnaire
    • (Q02, Q03, Q09, Q19, Q22, Q23):

  • It is possible to run the analysis with automatic reversal of negatively-correlated items
alpha(raq, check.keys=TRUE)
## Warning in alpha(raq, check.keys = TRUE): Some items were negatively correlated with total scale and were automatically reversed.
##  This is indicated by a negative sign for the variable name.
## 
## Reliability analysis   
## Call: alpha(x = raq, check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r
##       0.89      0.89    0.91      0.27
##  S/N    ase mean   sd median_r
##  8.3 0.0031  3.1 0.54     0.27
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88  0.89   0.9
## Duhachek  0.88  0.89   0.9
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc)
## Q01       0.88      0.89    0.90
## Q02-      0.89      0.89    0.91
## Q03-      0.88      0.89    0.90
## Q04       0.88      0.89    0.90
## Q05       0.89      0.89    0.90
## Q06       0.88      0.89    0.90
## Q07       0.88      0.89    0.90
## Q08       0.89      0.89    0.90
## Q09-      0.89      0.89    0.91
## Q10       0.89      0.89    0.90
## Q11       0.88      0.89    0.90
## Q12       0.88      0.89    0.90
## Q13       0.88      0.89    0.90
## Q14       0.88      0.89    0.90
## Q15       0.88      0.89    0.90
## Q16       0.88      0.89    0.90
## Q17       0.88      0.89    0.90
## Q18       0.88      0.88    0.90
## Q19-      0.89      0.89    0.90
## Q20       0.89      0.89    0.90
## Q21       0.88      0.89    0.90
## Q22-      0.89      0.89    0.91
## Q23-      0.89      0.90    0.91
##      average_r S/N alpha se var.r
## Q01       0.26 7.9   0.0032 0.016
## Q02-      0.28 8.4   0.0031 0.016
## Q03-      0.26 7.8   0.0033 0.017
## Q04       0.26 7.8   0.0033 0.016
## Q05       0.27 8.0   0.0032 0.017
## Q06       0.27 8.0   0.0032 0.016
## Q07       0.26 7.7   0.0034 0.016
## Q08       0.27 8.0   0.0032 0.016
## Q09-      0.28 8.4   0.0030 0.016
## Q10       0.27 8.2   0.0032 0.017
## Q11       0.26 7.8   0.0033 0.016
## Q12       0.26 7.7   0.0033 0.016
## Q13       0.26 7.7   0.0033 0.016
## Q14       0.26 7.8   0.0033 0.016
## Q15       0.26 7.9   0.0033 0.017
## Q16       0.26 7.7   0.0033 0.016
## Q17       0.26 7.8   0.0033 0.016
## Q18       0.26 7.7   0.0034 0.016
## Q19-      0.27 8.2   0.0032 0.017
## Q20       0.27 8.2   0.0032 0.017
## Q21       0.26 7.7   0.0033 0.016
## Q22-      0.28 8.4   0.0031 0.016
## Q23-      0.28 8.7   0.0030 0.014
##      med.r
## Q01   0.27
## Q02-  0.28
## Q03-  0.26
## Q04   0.26
## Q05   0.27
## Q06   0.27
## Q07   0.26
## Q08   0.27
## Q09-  0.28
## Q10   0.28
## Q11   0.26
## Q12   0.26
## Q13   0.26
## Q14   0.26
## Q15   0.27
## Q16   0.26
## Q17   0.26
## Q18   0.26
## Q19-  0.29
## Q20   0.28
## Q21   0.26
## Q22-  0.29
## Q23-  0.29
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop
## Q01  2571  0.55  0.57  0.54   0.50
## Q02- 2571  0.36  0.36  0.31   0.30
## Q03- 2571  0.65  0.64  0.62   0.59
## Q04  2571  0.61  0.61  0.59   0.55
## Q05  2571  0.54  0.55  0.52   0.48
## Q06  2571  0.56  0.55  0.53   0.49
## Q07  2571  0.67  0.67  0.65   0.62
## Q08  2571  0.51  0.53  0.51   0.46
## Q09- 2571  0.37  0.35  0.30   0.28
## Q10  2571  0.44  0.45  0.40   0.38
## Q11  2571  0.63  0.64  0.63   0.58
## Q12  2571  0.65  0.65  0.64   0.60
## Q13  2571  0.65  0.65  0.64   0.60
## Q14  2571  0.64  0.64  0.62   0.59
## Q15  2571  0.59  0.59  0.56   0.53
## Q16  2571  0.66  0.67  0.65   0.61
## Q17  2571  0.61  0.62  0.61   0.56
## Q18  2571  0.68  0.68  0.67   0.63
## Q19- 2571  0.47  0.46  0.42   0.40
## Q20  2571  0.45  0.45  0.41   0.38
## Q21  2571  0.64  0.64  0.63   0.59
## Q22- 2571  0.37  0.36  0.31   0.30
## Q23- 2571  0.23  0.22  0.15   0.15
##      mean   sd
## Q01   3.6 0.83
## Q02-  1.6 0.85
## Q03-  2.6 1.08
## Q04   3.2 0.95
## Q05   3.3 0.96
## Q06   3.8 1.12
## Q07   3.1 1.10
## Q08   3.8 0.87
## Q09-  2.8 1.26
## Q10   3.7 0.88
## Q11   3.7 0.88
## Q12   2.8 0.92
## Q13   3.6 0.95
## Q14   3.1 1.00
## Q15   3.2 1.01
## Q16   3.1 0.92
## Q17   3.5 0.88
## Q18   3.4 1.05
## Q19-  2.3 1.10
## Q20   2.4 1.04
## Q21   2.8 0.98
## Q22-  2.9 1.04
## Q23-  3.4 1.04
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## Q01 0.02 0.07 0.29 0.52 0.11    0
## Q02 0.01 0.04 0.08 0.31 0.56    0
## Q03 0.03 0.17 0.34 0.26 0.19    0
## Q04 0.05 0.17 0.36 0.37 0.05    0
## Q05 0.04 0.18 0.29 0.43 0.06    0
## Q06 0.06 0.10 0.13 0.44 0.27    0
## Q07 0.09 0.24 0.26 0.34 0.07    0
## Q08 0.03 0.06 0.19 0.58 0.15    0
## Q09 0.08 0.28 0.23 0.20 0.20    0
## Q10 0.02 0.10 0.18 0.57 0.14    0
## Q11 0.02 0.06 0.22 0.53 0.16    0
## Q12 0.09 0.23 0.46 0.20 0.02    0
## Q13 0.03 0.12 0.25 0.48 0.12    0
## Q14 0.07 0.18 0.38 0.31 0.06    0
## Q15 0.06 0.18 0.30 0.39 0.07    0
## Q16 0.06 0.16 0.42 0.33 0.04    0
## Q17 0.03 0.10 0.27 0.52 0.08    0
## Q18 0.06 0.12 0.31 0.37 0.14    0
## Q19 0.02 0.15 0.22 0.33 0.29    0
## Q20 0.22 0.37 0.25 0.15 0.02    0
## Q21 0.09 0.29 0.34 0.26 0.02    0
## Q22 0.05 0.26 0.34 0.26 0.10    0
## Q23 0.12 0.42 0.27 0.12 0.06    0